Approximate Inverse Preconditioningfor the Conjugate Gradient
نویسنده
چکیده
1. Introduction. In this note we consider the solution of large, sparse linear systems of
منابع مشابه
Crack Detection In Functionally Graded Beams Using Conjugate Gradient Method
In this paper the conjugate gradient (CG) method is employed for identifying the parameters of crack in a functionally graded beam from natural frequency measurement. The crack is modeled as a massless rotational spring with sectional flexibility. By using the Euler-Bernoulli beam theory on two separate beams respectively and applying the compatibility requirements of the crack, the characteris...
متن کاملA Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method
A method for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix A is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient calculations. It is proved that in exact arithmetic the preconditioner is well defined if A is an H-matrix. The results of numerical experiments are pre...
متن کاملRobust Approximate Inverse Preconditioning for the Conjugate Gradient Method
We present a variant of the AINV factorized sparse approximate inverse algorithm which is applicable to any symmetric positive definite matrix. The new preconditioner is breakdownfree and, when used in conjunction with the conjugate gradient method, results in a reliable solver for highly ill-conditioned linear systems. We also investigate an alternative approach to a stable approximate inverse...
متن کاملStabilized and Block Approximate Inverse Preconditioners for Problems in Solid and Structural Mechanics
The solution of linear systems arising in the ®nite element analysis of shells and solids by the preconditioned conjugate gradient method is considered. Stabilized and block versions of the AINV factorized approximate inverse preconditioner are presented and tested on a variety of dicult problems. Comparisons with other preconditioning methods are also included.
متن کاملParallel Finite Element Approximate Inverse Preconditioning on Symmetric Multiprocessor Systems
Parallel normalized preconditioned conjugate gradient type methods based on normalized approximate finite element inverse matrix techniques are investigated for the efficient solution of sparse linear systems. Application of the proposed methods on a three dimensional boundary value problems is discussed and numerical results are given. The parallel implementation of the normalized precondition...
متن کامل